Learning and Inference with Constraints

نویسندگان

  • Ming-Wei Chang
  • Lev-Arie Ratinov
  • Nicholas Rizzolo
  • Dan Roth
چکیده

Probabilistic modeling has been a dominant approach in Machine Learning research. As the field evolves, the problems of interest become increasingly challenging and complex. Making complex decisions in real world problems often involves assigning values to sets of interdependent variables where the expressive dependency structure can influence, or even dictate, what assignments are possible. However, incorporating nonlocal dependencies in a probabilistic model can lead to intractable training and inference. This paper presents Constraints Conditional Models (CCMs), a framework that augments probabilistic models with declarative constraints as a way to support decisions in an expressive output space while maintaining modularity and tractability of training. We further show that declarative constraints can be used to take advantage of unlabeled data when training the probabilistic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier

The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Constraint learning using adaptive neural-fuzzy inference system

Purpose – The purpose of this paper is to present a new method for solving parametric programming problems; a new scheme of constraints fuzzification. In the proposed approach, constraints are learned based on deductive learning. Design/methodology/approach – Adaptive neural-fuzzy inference system (ANFIS) is used for constraint learning by generating input and output membership functions and su...

متن کامل

A Job Shop Scheduling Problem with Sequence-Dependent Setup Times Considering Position-Based Learning Effects and Availability Constraints

 Sequence dependent set-up times scheduling problems (SDSTs), availability constraint and transportation times are interesting and important issues in production management, which are often addressed separately. In this paper, the SDSTs job shop scheduling problem with position-based learning effects, job-dependent transportation times and multiple preventive maintenance activities is studied. ...

متن کامل

Spatial Inference with Constraints

We present an approach for solving constraint nets occurring in spatial inference using methods of Machine Learning. In contrast to qualitative spatial reasoning we use a metric description. Relations between pairs of objects are represented by parameterised homogeneous transformation matrices and numerical (nonlinear) constraints on the parameters. For drawing inferences we have to multiply th...

متن کامل

Spatial Inference - Learning vs. Constraint Solving

We present a comparison of two new approaches for solving constraints occurring in spatial inference. In contrast to qualitative spatial reasoning we use a metric description, where relations between pairs of objects are represented by parameterized homogenous transformation matrices with numerical (nonlinear) constraints. We employ interval arithmetics based constraint solving and methods of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008